165,29 €
220,39 €
-25% su kodu: ENG25
Complex Abelian Varieties
Complex Abelian Varieties
165,29
220,39 €
  • Išsiųsime per 10–14 d.d.
This book explores the theory of abelian varieties over the field of complex numbers, explaining both classic and recent results in modern language. The second edition adds five chapters on recent results including automorphisms and vector bundles on abelian varieties, algebraic cycles and the Hodge conjecture. ." . . far more readable than most . . . it is also much more complete." Olivier Debarre in Mathematical Reviews, 1994.
  • Extra -25 % nuolaida šiai knygai su kodu: ENG25

Complex Abelian Varieties (el. knyga) (skaityta knyga) | knygos.lt

Atsiliepimai

(3.75 Goodreads įvertinimas)

Aprašymas

This book explores the theory of abelian varieties over the field of complex numbers, explaining both classic and recent results in modern language. The second edition adds five chapters on recent results including automorphisms and vector bundles on abelian varieties, algebraic cycles and the Hodge conjecture. ." . . far more readable than most . . . it is also much more complete." Olivier Debarre in Mathematical Reviews, 1994.

EXTRA 25 % nuolaida su kodu: ENG25

165,29
220,39 €
Išsiųsime per 10–14 d.d.

Akcija baigiasi už 1d.09:54:10

Nuolaidos kodas galioja perkant nuo 5 €. Nuolaidos nesumuojamos.

Prisijunkite ir už šią prekę
gausite 2,20 Knygų Eurų!?
Įsigykite dovanų kuponą
Daugiau

This book explores the theory of abelian varieties over the field of complex numbers, explaining both classic and recent results in modern language. The second edition adds five chapters on recent results including automorphisms and vector bundles on abelian varieties, algebraic cycles and the Hodge conjecture. ." . . far more readable than most . . . it is also much more complete." Olivier Debarre in Mathematical Reviews, 1994.

Atsiliepimai

  • Atsiliepimų nėra
0 pirkėjai įvertino šią prekę.
5
0%
4
0%
3
0%
2
0%
1
0%
(rodomas nebus)
[{"option":"174","probability":1,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/69738c2a550eb1769180202.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"173","probability":1.3,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/69738c13edaf41769180179.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"172","probability":1.6,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/69738c00656611769180160.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"171","probability":1.5,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/6979c7e026ae11769588704.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"170","probability":1.5,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/69738bd43f5c21769180116.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"169","probability":1.6,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/69738b882df611769180040.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"167","probability":1.4,"style":{"backgroundColor":"#f2f2f2"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/69738b6e6274b1769180014.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}},{"option":"166","probability":0.1,"style":{"backgroundColor":"#d91e2d"},"image":{"uri":"\/uploads\/images\/wheel_of_fortune\/69738b36427321769179958.png","sizeMultiplier":0.6,"landscape":true,"offsetX":-50}}]